个人简介
吴涛,美国加州大学河滨分校博士,暨南大学化学与材料学院教授、院党委书记兼任副院长,国家“高层次人才特殊支持计划”第九批科技创新领军人才(2024年),江苏省“六大人才高峰”第十五批高层次人才(2018年),江苏省杰出青年基金获得者(2016年),苏州市工业园区金鸡湖“双百人才计划”入选者(2014年),江苏省高层次创新创业人才(2013年),江苏省“创新团队计划”引进团队核心成员(2012年),苏州市高等院校、科研院所紧缺高层次人才(2012年),国家海外高层次青年人才(2012年),国家优秀自费留学生奖(2011年)。 吴涛教授主要从事无机晶态微孔框架材料和半导体簇基纳米材料的设计合成与功能化研究,已在化学和材料领域国际期刊发表论文160余篇,其中以第一作者或第一通讯作者身份在Acc. Chem. Res.、Nat. Sci. Rev.、Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、CCS Chem.、Chem. Sci.等期刊发表论文共计90余篇,全部署名论文总引用超1万次,H-index为60。主持国家自然科学基金重大研究计划重点项目1项、面上项目4项和江苏省杰出青年基金项目1项;担任《中国化学快报》编委和中国复合材料学会矿物复合材料专业委员会委员;获得广东省科学技术一等奖;2023-2024连续两年入选美国斯坦福大学联合爱思唯尔数据库发布的“全球前2%顶尖科学家”榜单;曾担任国家自然科学基金委化学学部重大研究计划重点项目、青年基金项目(B类)和面上项目的会评专家。
学习经历
1995/09 - 1999/06 三峡大学 化学教育专业 理学学士 2000/09 - 2003/06 汕头大学 工业催化专业 工学硕士 2006/09 - 2011/08 美国加州大学河滨分校 无机化学专业 理学博士
工作经历
2003/07 - 2006/08 汕头大学 助教、讲师 2011/09 - 2012/04 美国加州大学河滨分校 博后 2012/06 - 2021/04 苏州大学 教授/博导 2021/05 - 至今 暨南大学 教授/博导
研究方向
主要研究兴趣涉及功能配合物和晶态微孔框架材料的合成研究、半导体团簇光物理机制研究、面向药物中间体的有机光催化应用研究、面向“双碳”目标的二氧化碳和氮气分子光催化应用研究。长期从事晶态杂化微孔框架材料和半导体纳米团簇等化学材料领域的基础性研究工作,尤其在构建半导体纳米团簇中“精确位点-性能”构效关系、实现分立团簇的溶液离散化和催化应用、以及拓展晶态半导体框架材料多功能化应用方面(光致电致发光、吸附分离、X射线光导探测、电催化和光催化),做出了诸多开创性贡献。研究涉及如下多个领域:无机合成与制备化学、配位化学、团簇化学、光电化学、金属有机框架材料、分子筛多孔材料、半导体材料。目前,主要研究兴趣如下: (1) 新型金属硫族纳米团簇的设计合成和表面官能化; (2) 金属硫族簇基开放骨架和基于金属硫族簇基MOFs材料的设计合成; (3) 具有半导体特性类分子筛骨架材料的设计合成和光电性能调控; (4) 基于微孔半导体主客体材料的构建及其能量转移和光电子转移机制研究; (5) 离散型金属硫族纳米团簇的荧光和电化学发光性能研究; (6) 多元金属硫族簇基电催化剂的制备及其电催化、光催化性能研究; (7) 含惰性键有机分子和无机小分子的光活化与高效转化;
主要论文
部分论文成果 (*为通讯作者) Research ID: http://www.researcherid.com/rid/H-5754-2012; (updated on 2025-03-18)
Semiconductor clusters enable high-efficiency extraction of hot electrons from gold nanorods for photocatalytic organic conversions, Liu, J.-X.++; Ma. H.++; Yuan, S.-F.*, Zhang, J.-N.; Liang, J.-G.; Zhou, R.; Li, D.-S.; Chen, W. B.; Li, M.-D.; Wu, T.* Sci. China Chem., 2025, https://doi.org/10.1007/s11426-024-2506-8. [++These authors contributed equally to this work] Significantly enhanced NIR emission of solid-state clusters based on Cu4Pt2 triggered with volatile organic compounds, Hu, X. N.++; Zhong, X.-H.++; Zhong, R.-R.; Zhang, L.-M.; Hao, D.-B.; Xu, Q.; Wei, H.-Z.; Zhou, R.; Wei, J. Y.; Liu, K.-G.; Yuan, S.-F.*; Li, D.-S.; Wu, T.* Nanoscale, 2025, 17, 5829-5837. [++These authors contributed equally to this work] Plasmonic tandem heterojunctions enable high-efficiency charge transfer for broad spectrum photocatalytic hydrogen production, Chen, W. X.; Qiao, X.-Q.*; Hui, G.; Su, B. J.; Hou, D. F.; Wang, M. D.; Wu, X. Q.; Wu, T.*; Li, D.-S.*J. Energy Chem., 2025, 100, 710-720. Skillful promotion of charge separation via defect-mediated built-in electric field and LSPR effect for enhanced photocatalytic activity, Guo, H.++; Chen, W. X.++; Qiao, X.-Q.*; Li, C.; Sun, B. J.; Hou, D. F.; Wang, M. D.; Wu, X. Q.; Wu, T.*; Chi, R. A.; Li, D.-S.* Nano Energy, 2025, 135, 110672. [++These authors contributed equally to this work] Semiconductor-cluster-loaded ionic covalent organic nanosheets with enhanced photocatalytic reduction reactivity of nitroarenes, Zhang, J.-N.++; Liu, J.-X.++; Ma. H.; Luo, X.; Han, C.-K.; Zhou, R.; Yuan, S.-F.*, Wu, T.* J. Mater. Chem. A, 2024, 12, 14398. [++These authors contributed equally to this work] Highly intense NIR emissive Cu4Pt2 bimetallic clusters featuring Pt(I)-Cu4-Pt(I) sandwich kernel, Zhong, R.-R.++; Xie, M.++; Luan, C.-Z.; Zhang, L.-M.; Hao, D.-B.; Yuan, S.-F.*, Wu, T.* Chem. Sci., 2024, 15, 7552. [++These authors contributed equally to this work] Atomic- and molecular-level modulation of Mn2+-related emission using atomically-precise metal chalcogenide semiconductor nanoclusters, Wang, Z. Q.; Liu, J.-X.; Ma, H.; Xu, Y.-L.; Zhou, R.; Li, D.-S.; Yuan, S.-F*.; Wu, T.* Coord. Chem. Rev., 2024, 510, 215844. [++These authors contributed equally to this work] N-heterocyclic carbene-stabilized Cu9 Clusters with Combined Thermally Activated Delayed Fluorescence and Phosphorescence, Zhang, L.-M.; Xie, M.; Wei, H. Z.; Yuan, S.-F.*; Wu, T.* Inorg. Chem. Front., 2024, 11, 2498-2507. [++These authors contributed equally to this work] Molecular Insight into Intrinsic-Trap-Mediated Emission from Atomically Precise Copper-based Chalcogenide Models, Xu, Y.-L.++; Ding, Y. Y.++; Zhang, L.-M.; Ma, H.; Liu, J.-X.; Zhang, J. X.; Zhou, R.; Li, D.-S.; Yuan, S.-F.*; Wu, T.* Inorg. Chem. Front., 2024, 11, 409−416. [++These authors contributed equally to this work] Interface Microenvironment Mediates Emission of Semiconductor Nanocluster via Surface-Dopant-Involved Direct Charge Transfer, Wang, Z. Q.++; Ma, H.++; Zhang, J. X.++; Lan, Y. J.++; Liu, J.-X.; Yuan, S.-F.; Zhou, X.-P.; Li, X. H.; Qin, C. C; Li, D.-S.; Wu, T.* Chem. Sci. 2023, 14, 10308−10317. [++These authors contributed equally to this work] Atomic-Level Insights into Manganese-Environment-Related Photophysical Properties of II-III-VI Quantum Dots Using Well-Defined Nanofragments, Zhang, J. X.++; Wang, J.++; Li, J.++; Debnath, T.++; Zhou, R.; Wang, Z. Q.; Xu, L. H.; Wang, X.; Qin, C. C.*; Xu, D. G.*; Yang, S. R.; Li, M. D.; Li, D.-S.; Wu, T.* J. Phys. Chem. C. 2023, 127, 15951−15961. [++These authors contributed equally to this work] Atomically Precise Metal Chalcogenide Supertetrahedral Clusters: Frameworks to Molecules, and Structure to Function, Zhang, J. X.; Feng, P.*; Bu, X.; Wu, T.* Nat. Sci. Rev., 2022, 9, nwab076. Ultrastable Anti-Acid “Shield” in Layered Silver Coordination Polymers, Sun, P. P. ++; Xie, M. ++; Zhang, L.-M.; Liu, J.-X.; Wu, J.; Li, D.-S.; Yuan, S.-F.*; Wu, T.*; Li, D.* Angew. Chem. Int. Ed. 2022, 61, e202209971. [++These authors contributed equally to this work] A Chalcogenide-cluster-based Semiconducting Nanotube Array with Oriented Photoconductive Behavior, Tang, J. Q.++; Wang, X.++; Zhang, J. X.++; Wang, J.; Yin, W. J.; Li, D.-S.; Wu, T.* Nat. Commun. 2021, 12, 4275. [++These authors contributed equally to this work] Minimized External Electric Field on Asymmetric Monolayer Maximizes Charge Separation for Photocatalysis, Yang, W. J.; Wang, X. L.; Kong, N. N.; Liu, C. D.; Sun, P. P.; Wang, Z. Q.; Ding, Y. Y.; Lin, H. P.; Li, D.-S.; Wu, T.* Appl. Catal. B: Environ. 2021, 295, 120266. 0D/2D Heterostructure Constructed by Ultra-small Chalcogenide-cluster Aggregated Quaternary Sulfides and g-C3N4 for Enhanced Photocatalytic H2 Evolution, Wu, Z.; Wang, X.-L.; Wang, X.*; Xu, X. F; Li, D.-S.; Wu, T.* Chem. Eng. J. 2021, 426, 131216. 0D/1D Heterostructure for Efficient Electrocatalytic CO2-to-C1 Conversion by Ultra-small Cluster-based Multi-metallic Sulfide Nanoparticles and MWCNTs, Wang, X.; Wang, X.-L.; Lv, J.; Wu, Z.; Zhang, J. X.; Hu, D. D.; Xue, C. Z.; Li, D.-S.; Zhu, X.; Wu, T.* Chem. Eng. J. 2021, 422, 130045. Bifunctional Electrocatalysts Derived from Cluster-based Ternary Sulfides for Oxygen Electrode Reactions, Wang, X.-L.; Wu, Z.; Wang, X.; Xue, C. Z.; Liu, C. D.; Zhang, J. X.; Zhou, R.; Li, D.-S.; Wu, T.* Electrochimica Acta 2021, 376, 138048. Unveiling the Impurity-modulated Photoluminescence from Mn2+-containing Metal Chalcogenide Semiconductors via Fe2+ doping, Wang, Z. Q.; Liu, Y.; Zhang, J. X.; Wang, X.; Wu, Z.; Wu, J.; Chen, N.; Li, D.-S.; Wu, T.* J. Mater. Chem. C 2021, 9, 13680−13686. Metal Chalcogenide Supertetrahedral Clusters: Synthetic Control over Assembly, Dispersibility and Their Functional Applications, Zhang, J. X.; Bu, X. H.; Feng, P. Y.; Wu, T.* Acc. Chem. Res. 2020, 53, 2261−2272. (Cover) New Insights into Mn–Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn2+-Doped Semiconductors, Liu, Y.++; Zhang, J. X.++; Han, B.; Wang, X.; Wang, Z. Q.; Xue, C. Z.; Bian, G. Q.; Hu, D. D.; Zhou, R.; Li, D.-S.; Wang, Z. X.; Ouyang, Z. W.; Li, M. D.; Wu, T.* J. Am. Chem. Soc. 2020, 142, 6649−6660. [++These authors contributed equally to this work] A Photoconductive X-ray Detector with a High Figure of Merit based on an Open-Framework Chalcogenide Semiconductor, Wu, S. J.++; Liang, C. Y.++; Zhang, J. X.; Wu, Z.; Wang, X.-L.; Zhou, R.; Wang, Y. X.; Wang, S. A.; Li, D.-S.; Wu, T.* Angew. Chem. Int. Ed. 2020, 59, 18605−18610. [++These authors contributed equally to this work] (Cover) Direct Observation of Charge Transfer between Molecular Heterojunctions Based on Inorganic Semiconductor Clusters, Xue, C. Z.++; Fan, X.++; Zhang, J. X.; Hu, D. D.; Wang, X.-L.; Wang, X.; Zhou, R.; Lin, H. P.; Li, Y. Y.; Li, D.-S.; Zheng, D. Y.; Yang, Y.; Han, K. L.; Wu, T.* Chem. Sci. 2020, 11, 4085−4096. [++These authors contributed equally to this work] Breakdown of Valence Shell Electron Pair Repulsion Theory in an H-Bond-Stabilized Linear sp-Hybridized Sulfur, Wu, J.++; Jin, B.++; Wang, X.; Ding, Y. Y.; Wang, X.-L.; Tang, D. D.; Li, X. H.; Shu, J.; Li, D.-S.; Lin, Q. P.; Wu, Y.-B.; Wu, T.* CCS Chemistry, 2020, 2, 2584−2590. [++These authors contributed equally to this work] Atomically Precise Metal-Chalcogenide Semiconductor Molecular Nanoclusters with High Dispersibility: Designed Synthesis and Intracluster Photocarrier Dynamics, Zhang, J. X.++; Qin, C. C.++; Zhong, Y. S.++; Wang, X.; Wang, W.; Hu, D. D.; Liu, X. S.; Xue, C. Z.; Zhou, R.; Shen, L.; Song, Y. L.; Xu, D. G.; Lin, Z. E.; Guo, J.; Su, H. F.; Li, D.-S.; Wu, T.* Nano Research 2020, 13, 2828−2836. [++These authors contributed equally to this work] S-Doped Ni(OH)2 Nano-Electrocatalyst Confined in Semiconductor Zeolite with Enhanced Oxygen Evolution Activity, Hu, D. D.; Wang, X.; Chen, X. T.; Wang, Y. X.; Hong, Anh N.; Zhong, J.; Xian, H.; Feng, P.*; Wu, T.* J.Mater. Chem. A 2020, 8, 11255−11260. A High-Activity Bimetallic OER Cocatalyst for Efficient Photoelectrochemical Water Splitting of BiVO4, Hu, R. L.++; Meng, L. X.++; Zhang, J. X.; Wang, X.; Wu, S. J.; Wu, Z.; Zhou, R.; Li, L.; Li, D.-S.; Wu, T.* Nanoscale 2020, 12, 8875−8882. [++These authors contributed equally to this work] Hierarchical Heterostructure of SnO2 Confined on CuS Nanosheets for Efficient Electrocatalytic CO2 Reduction, Wang, X.; Lv, J.; Zhang, J. X.; Wang, X.-L.; Xue, C. Z.; Bian, G. Q.; Li, D.-S.; Wang, Y.; Wu, T.* Nanoscale 2020, 12, 772−784. Enhanced Water Dispersibility of Discrete Chalcogenide Nanoclusters with Sodalite-Net Loose-Packing Pattern in Crystal Lattice, Xue, C. Z.; Zhang, L.; Wang, X.; Hu, D. D.; Wang, X.-L.; Zhang, J. X.; Zhou, R.; Li, D.-S.; Su, H. F.; Wu, T.* Inorg. Chem. 2020, 59, 15587−15594. (Cover) [ACS Editors’ Choice] Cooperativity by Multi-Metals Confined in Supertetrahedral Sulfide Nanocluster on Enhancing Electrocatalytic Hydrogen Evolution, Liu, D. L.++; Fan, X.++; Wang, X.; Hu, D. D.; Xue, C. Z.; Liu, Y.; Wang, Y.; Zhu, X.; Guo, J.; Lin, H. P.*; Li, Y. Y.; Zhong, J.*; Li, D.-S.; Bu, X.*; Feng, P.; Wu, T.* Chem. Mater. 2019, 31, 553−559. [++These authors contributed equally to this work] Light-Triggered Evolution of Molecular Cluster toward Sub-nanoscale Heterojunction with High Interface Density, Xue, C. Z.; Zhang, J. X.; Wang, X.; Gu, M.; Zhu, Y. M.; Li, D.-S.; Guo, J.; Liu, Y.; Wu, T.* Chem. Comm. 2019, 55, 8146−8149. A Multivalent Mixed-metal Strategy for Single-Cu+-Ion-Bridged Cluster-based Chalcogenide Open Frameworks for Sensitive Nonenzymatic Detection on Glucose, Zhang, J. X.++; Wang, X.++; Lv, J.; Li, D.-S.; Wu, T.* Chem. Comm. 2019, 55, 6357−6360. [++These authors contributed equally to this work] (Inside Cover) The Largest Supertetrahedral Oxychalcogenide Nanocluster and Its Unique Assembly, Yang, H. J.; Zhang, J.; Luo, M.; Lin, H. P.; Li, Y. Y.; Li, D. S.; Feng, P.; Wu, T.* J. Am. Chem. Soc. 2018, 140, 11189−11192. (Inside Cover) Pushing up the Size Limit of Metal Chalcogenide Supertetrahedral Nanocluster, Xu, X. F.++; Wang, W.++; Liu, D. L.; Hu, D. D.; Wu, T.*, Bu, X.; Feng, P.* J. Am. Chem. Soc.2018, 140, 888−891. [++These authors contributed equally to this work] Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires, Liu, D. L.; Liu, Y.; Huang, P.; Zhu, C.; Kang, Z. H.; Shu, J.; Chen, M. Z.; Zhu, X.; Guo, J.; Zhuge, L. J.; Bu, X.; Feng, P.*; Wu. T.* Angew. Chem. Int. Ed. 2018, 57, 5374−5378. A Semiconducting Metal-Chalcogenide-Organic Framework with Square-Planar Tetra-coordinated Sulfur, Yang, H. J.; Luo, M.; Wu, Z.; Wang, W.; Xue, C. Z.; Wu, T.* Chem. Commun. 2018, 54, 11272−11275. Monodisperse Ultrasmall Manganese-Doped Multi-metal Oxysulfide Nanoparticles as Highly Efficient Oxygen Reduction Electrocatalyst, Zhang, Y. Y.; Wang, X.*; Hu, D. D.; Xue, C. Z.; Wang, W.; Lin, J.; Yang, H. J.; Wu, T.* ACS Applied Materials & Interfaces. 2018, 10, 13413−13424. Host-Guest Electrocatalyst with Cage-Confined Cu2S Nanoparticles Embeded in Semiconductor Chalcogenide Zeolite for Highly Efficient Oxygen Reduction Reaction, Hu, D. D.; Wang, X.; Yang, H. J.; Liu, D. L.; Zhang, Y. Y.; Xue, C. Z.; Wang, W.; Li, D. S.; Wang, Y.; Guo, J.; Wu, T.* Electrochimica Acta. 2018, 282, 877−885. Exploring the Effect of Intercluster Torsion Stress on Mn2+-Related Red Emission from Cluster-based Layered Metal Chalcogenides, Xu, X. F.; Hu, D. D.; Xue, C. Z.; Zhang, J. X.; Li, D. S.; Wu, T.* J. Mater. Chem. C 2018, 6, 10480−10485. Intrinsic Vacancy Point Defect Induced Electrochemiluminescence from Coreless Supertetrahedral Chalcogenide Nanocluster, Wang, F.++; Lin, J.++; Zhao, T. B.; Hu, D. D.; Wu, T.*; Liu Y.* J. Am. Chem. Soc. 2016, 138, 7718−7724. [++These authors contributed equally to this work] Highly Selective and Rapid Cesium Uptake of Radionuclide Cesium Based on Robust Zeolitic Chalcogenide via Stepwise Ion-Exchange Strategy, Yang, H. J.; Luo, M.; Luo, L.; Wang, H. X.; Hu, D. D.; Lin, J.; Wang, X.; Wang, Y. L.; Wang, S. A.; Bu, X.*; Feng, P.*; Wu, T.* Chem. Mater. 2016, 28, 8774−8780. A Novel Copper-Rich Open-Framework Chalcogenide Constructed from Octahedral Cu4Se6 and Icosahedral Cu8Se13 Nanocluster, Yang, H.-J.; Wang, L.; Hu, D.-D.; Lin, J.; Luo, L.; Wang, H.-X.; Wu, T.* Chem. Comm. 2016, 52, 4140−4143. (Inside Cover) Exploring Mn2+-Location-Dependent Red Emission from (Mn/Zn)-Ga-Sn-S Supertetrahedral Nanocluster with Relatively Precise Dopant Position, Zhang, Q.; Lin, J.; Yang, Y.-T.; Qin, Z.-Z.; Li, D. S.; Wang, S. A.; Liu, Y. P.; Zou, X. X.; Wu, Y.-B.*; Wu, T.* J. Mater. Chem. C 2016, 4, 10435−10444. (Hot paper, Front Cover) Highly Effective Nano-segregation of Dual Dopants in a Micron-Sized Nanocluster-Based Semiconductor Molecular Single Crystal for Targeting White-Light Emission, Lin, J.; Wang, L.; Zhang, Q.; Bu, F.; Wu, T.; Wu, T.*; Bu, X.; Feng, P. J. Mater. Chem. C 2016, 4, 1645−1650. Improving Photoluminescence Emission Efficiency of Nanocluster Based Materials by In-situ Doping Synthetic Strategy, Lin, J.; Hu, D. D.; Zhang, Q.; Li, D.-S.; Wu, T.*; Bu, X.; Feng, P.* J. Phys. Chem. C 2016, 120, 29390−29396. Interrupted Chalcogenide-Based Zeolite-Analog Semiconductor: Atomically Precise Doping for Tunable Electro-/Photoelectrochemical Properties, Lin, J.++; Dong, Y. Z.++; Zhang, Q.; Hu D. D.; Li, N.; Wang, L.*; Liu, Y.*; Wu, T.* Angew. Chem. Int. Ed. 2015, 54, 5103−5107. (VIP) [++These authors contributed equally to this work] Multi-Step Host-Guest Energy Transfer Between Inorganic Chalcogenide-Based Semiconductor Zeolite Material and Organic Dye Molecules, Hu, D. D.; Lin, J.; Zhang, Q.; Lu, J. N.; Wang, X. Y.; Wang, Y. W.; Bu, F.; Ding, L. F.; Wang, L.*; Wu, T.* Chem. Mater.2015, 27, 4099−4104. Tuning Efficiency of Multi-Step Energy Transfer in Host-Guest Antennae System based on Chalcogenide Semiconductor Zeolite through Acidification and Solvation of Guests, Hu, D. D.; Wang, L.; Lin, J.; Bu, F.; Wu, T.* J. Mater. Chem. C 2015, 3, 11747−11753. Atomically Precise Doping of Mono-manganese Ion into Coreless Supertetrahedral Chalcogenide Nanocluster Inducing Unusual Red Shift in Mn2+ Emission, Lin, J.; Zhang, Q.; Wang, L.; Liu, X. C.; Yan, W. B.; Wu, T.*; Bu, X.*; Feng, P.* J. Am. Chem. Soc. 2014, 136, 4769−4779. Monocopper Doping in Cd-In-S Supertetrahedral Nanocluster via Two-step Strategy and Enhanced Photoelectric Response, Wu, T.*; Zhang, Q.; Hou, Y.; Wang, L.; Mao, C.; Zheng, S. T.; Bu, X.; Feng, P.* J. Am. Chem. Soc. 2013, 135, 10250−10253. Superbase-Route to Supertetrahedral Chalcogenide Clusters, Wu, T.; Bu, X.; Liao, P.; Wang, L.; Zheng, S. T.; Ma, R.; Feng, P.* J. Am. Chem. Soc. 2012, 134, 3619−3622. A Large Indium Sulfide Supertetrahedral Cluster Built from Integration of ZnS-Like Tetrahedral Shell with NaCl-Like Octahedral Core, Wu, T.; Zuo, F.; Wang, L.; Bu, X.; Zheng, S. T.; Ma, R.; Feng, P.* J. Am. Chem. Soc. 2011, 133, 15886−15889. Phase Selection and Site-Selective Distribution by Tin and Sulfur in Supertetrahedral Zinc Gallium Selenides, Wu, T.; Bu, X.; Zhao, X.; Khazhakyan, R.; Feng, P.* J. Am. Chem. Soc. 2011, 133, 9616−9625. Three-Dimensional Covalent Co-Assembly between Inorganic Supertetrahedral Clusters and Imidazolates, Wu, T.; Khazhakyan, R.; Wang, L.; Bu, X.; Zheng, S. T.; Chau, V.; Feng, P.* Angew. Chem. Int. Ed.2011, 50, 2536−2539. Largest Molecular Clusters in Supertetrahedral Tn Series, Wu, T.; Wang, L.; Bu, X.; Chau, V., Feng, P.* J. Am. Chem. Soc. 2010, 132, 10823−10831. Synthetic Control of Selenide Supertetrahedral Clusters and Three-Dimensional Co-assembly by Charge-Complementary Metal Cations, Wu, T.; Wang, X. Q.; Bu, X.; Zhao, X.; Wang, L.; Feng, P.* Angew. Chem. Int. Ed. 2009, 48, 7204−7207. Zeolite RHO-Type Net with the Lightest Elements, Wu, T.; Zhang, J.; Zhou, C.; Wang, L.; Bu, X. *; Feng, P.* J. Am. Chem. Soc. 2009, 131, 6111−6113. Zeolitic Boron Imidazolate Frameworks, Zhang, J.++; Wu, T.++; Zhou, C.; Chen, S.; Feng, P.*; Bu, X.* Angew. Chem. Int. Ed. 2009, 48, 2542−2545. [++These authors contributed equally to this work.] Variable Lithium Coordination Modes in Two- and Three-Dimensional Lithium Boron Imidazolate Frameworks, Wu, T.; Zhang, J.; Bu, X.*; Feng, P.* Chem. Mater. 2009, 21, 3830−3837. New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands, Wu, T.; Bu, X.; Zhang, J.; Feng, P.* Chem. Mater. 2008, 20, 7377−7382. A New Zeolitic Topology with Sixteen-membered Ring and Multidimensional Large Pore Channels, Wu, T.; Bu, X.; Liu, R.; Lin, Z.; Zhang, J.; Feng, P.* Chem. Eur. J. 2008, 14, 7771−7773. Twelve-connected Net with Face-centered Cubic Topology: A Coordination Polymer Based on [Cu12(μ4-SCH3)6]6+ Clusters and CN- Linkers, Li, D.*; Wu, T.; Zhou, X. P.; Zhou, R.; Huang, X. C. Angew. Chem. Int. Ed. 2005, 44, 4175−4178.
主要著作
Inorganic Crystalline Semiconducting Materials from Chalcogenide Tetrahedral Clusters, Wu, T.*; Xue, C.; Bu, X.; Feng, P. in Comprehensive Inorganic Chemistry III, Elsevier, 2021.
承担课题
国家自然科学基金重大研究计划集成项目,92461309,基于环三核单元的异类型团簇组装体的构筑、结构与功能研究,2025.01–2027.12,318 万元(直接经费),参与,执行中。 生物活性分子与成药性优化全国重点实验室自主课题,20240202,团簇基复合光催化剂创制与含惰性官能团药物分子的衍生化,2024.06–2026.05,50 万元,主持,执行中。 国家自然科学基金重大研究计划重点项目,92261205,原子精确硫族半导体分子团簇中热电子动力学及其光催化应用研究,2023.01–2026.12,370 万元(直接经费),主持,执行中。 国家自然科学基金面上项目,22071165,锰基半导体纳米团簇的构筑及其荧光调控机制与器件化研究,2021.01–2024.12,63 万元(直接经费),主持,已结题。 国家自然科学基金面上项目,21875150,多元金属硫族簇基电催化剂的制备及其电催化还原反应性能研究,2019.01–2022.12,65 万元(直接经费),主持,已结题。 国家自然科学基金面上项目,21671142,基于金属硫族半导体分子筛主客体复合材料的构建以及主体参与的能量和电子转移机制研究,2017.01–2020.12,65 万元(直接经费),主持,已结题。 国家自然科学基金面上项目,21271135,新型半导体“量子点”材料:金属硫族超四面体簇的离散化和表面功能化,2013.01–2016.12,80 万元,主持,已结题。 江苏省科学技术厅杰出青年基金项目,BK20160006,金属硫族纳米团簇及其超结构的构建与功能化研究,2016.07–2019.06, 100 万元,主持,已结题。
讲授课程
《现代无机合成化学》(全英)、《无机化学》、《化学与材料概论》、《无机化学实验》、《材料制备与技术》、《化学研究方法专论》、《超分子配位化学》、《化学论文阅读与写作》等。
荣誉奖励
万人计划领军人才,国家级青年人才,省级青年人才
社会职务
国家自然科学基金委、科技部、江苏省、广东省、福建省科技项目的函评或会评专家; Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.等学术期刊审稿人; 中国复合材料学会矿物复合材料专业委员会委员; 《Chinese Chemical Letters》(中国化学快报)第五届 (2021/01-2022/06)和第七届编委会委员(2025/01-2028/12);
|