1. Gehao Wang, The ordered exponential representation of GKM using the W1+∞ operator. J. High Energ. Phys. 2023, 215 (2023). https://doi.org/10.1007/JHEP03(2023)215
2. Gehao Wang, From Kontsevich-Witten to linear Hodge integrals via Virasoro operators, Journal of Mathematical Physics 59, 123502 (2018). DOI:/10.1063/1.5043407,[arXiv:1812.06052].
3. Shuai Guo, Gehao Wang, Virasoro constraints and polynomial recursion for the linear Hodge integrals, Letters in Mathematical Physics (2017), 107(4), pp 757-791. DOI: 10.1007/s11005-016-0923-x, [arXiv:1608.02077].
4. Xiaobo Liu, Gehao Wang, Connecting the Kontsevich-Witten and Hodge Tau-functions by the GL(∞) operators, Communications in Mathematical Physics (2016), 346(1), 143-190, DOI: 10.1007/s00220-016-2671-2, [arXiv:1503.05268].
5. Kay Magaard, Sergey Shpectorov, Gehao Wang, Generating sets of affine groups of low genus, Computational Algebraic and Analytic Geometry, Contemporary Mathematics, vol. 572, Amer. Math. Soc., Providence, RI, 2012, pp. 173-192. [arXiv:1108.4833].
